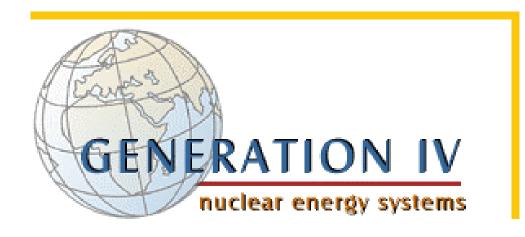
Modern HTR Technology With Process Heat Applications

Dr. Regis A. Matzie
Senior Vice President & Chief Technology Officer


Westinghouse Electric Company LLC

October 1, 2008

What is a High Temperature Reactor (HTR) Today?

- Small thermal reactor –
 400-600 MWth
- Gas cooled helium
- High temperature
 - 750-950°C coolant outlet temperature
- Graphite moderated
- Particle fuel core pebble or prismatic design
- Passive safety with inherent characteristics

Very High Temperature Reactor (VHTR)

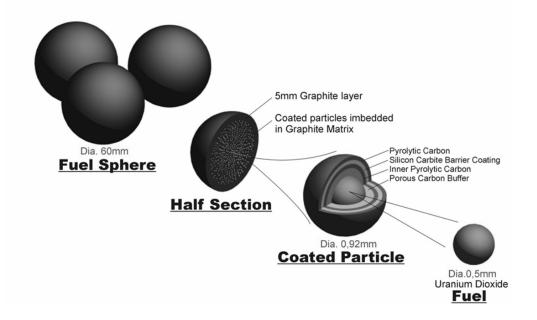
Historical Look – Genesis

United Kingdom

- Developmental
 - Dragon (20 MWth) 1964-1977
- Large commercial program (Magnox and AGR) but CO₂ cooled
- Germany (Pebble)
 - Developmental
 - AVR (15 MWe) 1967-1989
 - Commercial Demonstration
 - THTR (300 MWe) 1985-1989
- United States (Prismatic)
 - Developmental
 - Peach Bottom 1 (40 MWe) 1967-1974
 - Commercial Demonstration
 - Fort St Vrain (330 MWe) 1979-1989

AVR

Peach Bottom 1



What Are the Design Options?

- Prismatic versus Pebble Fuel
 - Fixed vs Dynamic Core
 - Periodic vs On-line Refueling
 - Burnable Poison Control vs Fuel Inventory Control of Excess Reactivity
 - Multiple fuel types vs single fuel type
- Direct versus Indirect Cycles
 - Direct Cycle for Electricity
 - Indirect Cycle for flexible process heat and cogeneration options

HTR Fuel Forms

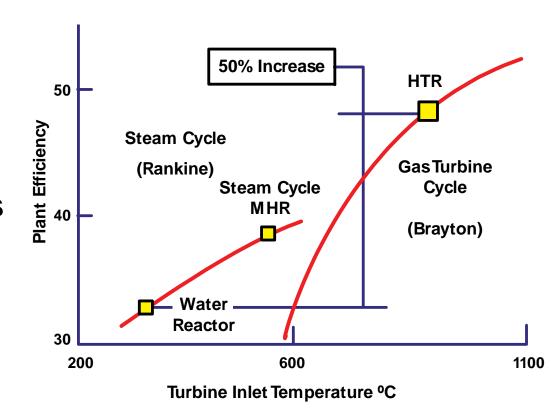
FUEL COMPACT

FISSILE
(URANIUM <19.8% ENRICHED

FERTILE
(NAT URANIUM)

Pebble Design

Prismatic Design


The Promise of HTRs

- High Thermal Efficiency
- Enhanced Safety allowing Close-in Siting
- Better Fuel Utilization
- Improved Waste Disposal
- Enhanced Proliferation Resistance
- Competitive Economics
- Process Heat Applications with no CO₂ emissions

High Thermal Efficiency – Electricity

- Light Water Reactors (LWRs)
 - Utilize Steam Rankine Cycle
 - Coolant Outlet Temperature 315-330°C
 - Typical thermal efficiency value 33-35%
- High Temperature Reactors (HTRs)
 - Utilize Rankine or Brayton Cycle
 - Coolant Outlet Temperature 750-900°C
 - Typical thermal efficiency value 41-48%

Enhanced Safety

- Coated particle fuel as the principal fission product barrier
- Single phase inert coolant with no reactivity effects
- Large negative temperature coefficient throughout core life
- High reactor heat capacity with very long response/ transient times and continued structural integrity
- Large fuel temperature margins
- Low power density and low decay heat in large uninsulated reactor vessel
- Annular Core geometry with large surface area
- On-line refueling (pebble) with very low excess reactivity
- Passive decay heat removal via convection, conduction, and radiation through components to concrete heat sink

Passive Safety with Virtually No Core Melt

Better Fuel Utilization

- Low power density
- Good neutron spectrum with minimal neutron self shielding
- Minimal neutron parasitic absorption from core structures
- On-line refueling (pebble) that minimizes core fission product burden
- Particle fuel capable of high burnup (>> LWRs)
- Flexible fuel cycle (UO₂, ThO₂, PuO₂, UCO, etc.)

Improved Fuel Economics

Improved Waste Disposal

- Particle fuel is self-encapsulating, i.e., contains fission products inside particle coatings
- Very stable ceramic fuel form provides long term stability in waste repository
- Low decay heat power density allows air cooling after discharge from the reactor
- Easily amenable to consolidation by removal of matrix graphite
- High burnup means less waste per volume of heavy metal
- Structural graphite decontamination and recycle are possible to reduce disposal burden

Enhanced Proliferation Resistance

- High fuel burnup leaves small quantities of plutonium at discharge with poor isotopics
- Low loading of fuel material in graphite matrix requires diversion of large physical quantities to be a significant material risk
- Coated particle barriers are difficult to remove
- Totally closed fuel handling and storage system (pebble) makes diversion easy to detect

Compatible with International Goals

Today's Major HTR Programs

China

- Operating 10 MWth pebble bed fuel prototype; initial criticality 2000
- Commercial electricity demonstration program (HTR-PM) ongoing; twin unit 200 MWe total; scheduled for operation 2014

Japan

- Operating 30 MWth prismatic fuel prototype; initial criticality 2000; provides heat source for H₂ generation development
- No commercial program

South Africa

 Commercial electricity demonstration program (PBMR) ongoing; single unit 165 MWe; scheduled for operation 2014

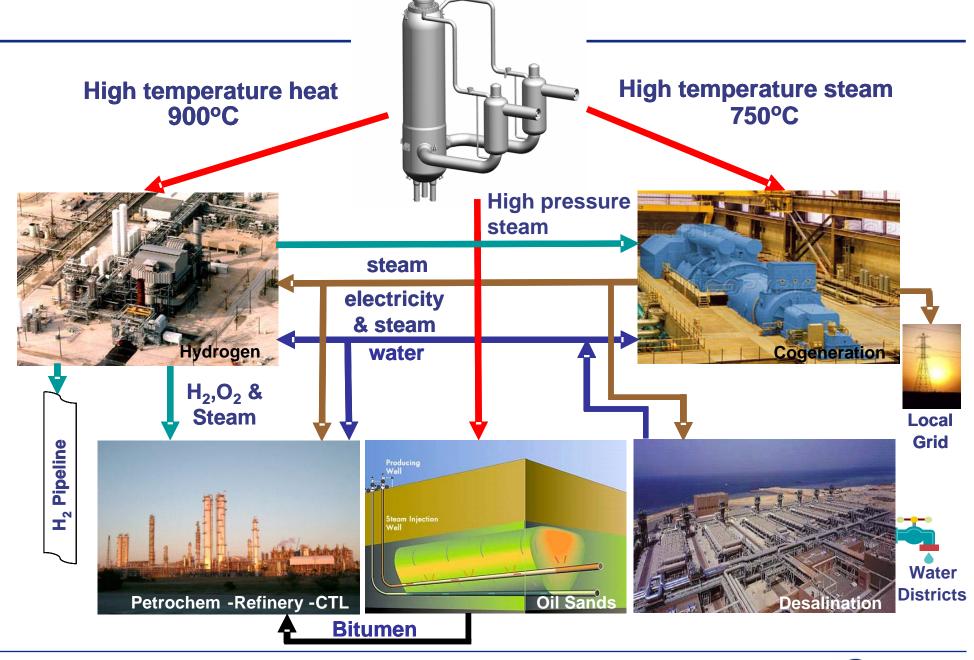
United States

 Commercial process heat demonstration program (NGNP) initiated

HTR-10 (China)

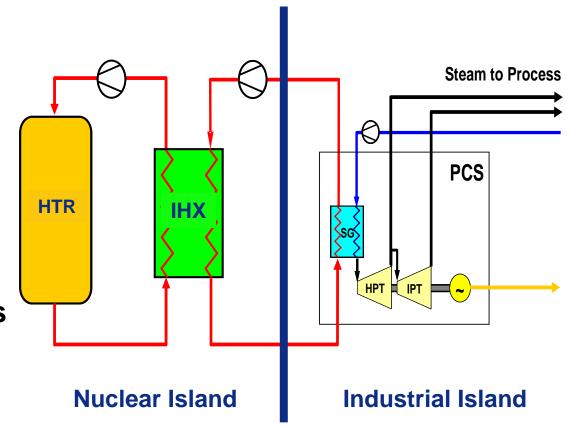
HTTR (Japan)

U.S. Next Generation Nuclear Plant (NGNP)


- Authorized under US Energy Policy Act of 2005
- Co-generation of electricity and H₂ mission
- Three teams awarded contracts 9/2006
- Generation IV R&D ongoing
- Construction start 2014-2015; criticality 2019 (proposed)
- Shift in Focus and Plan per Industry/Market Consensus
 - Industry owned with DOE cost share; process steam cogeneration for first-offleet demonstration plant
 - Parallel development and demonstration of higher temperature technologies, e.g., H₂ production, at INL – adaptability without another nuclear demonstration
- RFIs and EOIs Submitted in June 2008

Next Generation Nuclear Plant (NGNP)

Process Heat Markets - Path to Hydrogen


HTR Process Heat Fundamentals

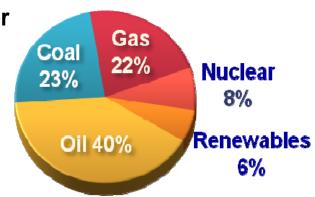
- High process heat temperatures enable broad applicability
- Smaller plant size matches process heat energy needs
- Safety approach allows close-in siting to process application facilities
- Nuclear energy replaces premium fossil fuel (e.g., natural gas) that has uncertain availability and cost
- Opportunity to substitute abundant domestic coal resources for imported oil through CTL conversion
- Directly addresses green house gas emissions and hedges against future carbon taxes

Process Heat Plant Licensing Considerations

- Co-locating nuclear and industrial facilities creates some unique challenges:
- New operational hazards and threats to each side
- Regulatory jurisdictional conflict potential
- Potentially costly separation provisions
- Design reliability (N-x) and operational cycle demands
- Emergency planning

What's Different – Future Opportunities

Approach to economics


- Smaller power increments; grid tariff not depressed
- Less financial risk because of investment size
- Short construction schedule; modular factory construction

Deployment for electricity generation

- Distributed power reduced grid investment
- Site flexibility lower thermal heat waste and lower cooling requirements

Process heat applications

- Re-powering of chemical plants and refineries
- Oil sands recovery and upgrading
- Hydrogen generation
- Coal-to-liquids conversion
- Desalination
- etc.

U.S. Energy Consumption

HTR Opportunities are Endless!

